Help:Math

From DynaWiki

Jump to: navigation, search
Line 11: Line 11:
|<pre>[mathb]\Delta T^{\prime}\;=\;\frac{\Delta T}{\sqrt{1\;-\;\frac{v^{2}}{c^{2}}}}[/mathb]</pre>
|<pre>[mathb]\Delta T^{\prime}\;=\;\frac{\Delta T}{\sqrt{1\;-\;\frac{v^{2}}{c^{2}}}}[/mathb]</pre>
|[mathb]\Delta T^{\prime}\;=\;\frac{\Delta T}{\sqrt{1\;-\;\frac{v^{2}}{c^{2}}}}[/mathb]
|[mathb]\Delta T^{\prime}\;=\;\frac{\Delta T}{\sqrt{1\;-\;\frac{v^{2}}{c^{2}}}}[/mathb]
 +
|-
|Block Math
|Block Math
-
|<pre><math></math></pre>
+
|<pre><math>\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}</math></pre>
-
|<math> \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}</math>
+
|<math>\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}</math>
|}
|}

Revision as of 05:03, 6 October 2010


All material copyright 1996-2011 Dynaverse.Net / XenoCorp Inc. unless otherwise noted. All Rights Reserved.
Site Map