Help:Math
From DynaWiki
Line 11: | Line 11: | ||
|<pre>[mathb]\Delta T^{\prime}\;=\;\frac{\Delta T}{\sqrt{1\;-\;\frac{v^{2}}{c^{2}}}}[/mathb]</pre> | |<pre>[mathb]\Delta T^{\prime}\;=\;\frac{\Delta T}{\sqrt{1\;-\;\frac{v^{2}}{c^{2}}}}[/mathb]</pre> | ||
|[mathb]\Delta T^{\prime}\;=\;\frac{\Delta T}{\sqrt{1\;-\;\frac{v^{2}}{c^{2}}}}[/mathb] | |[mathb]\Delta T^{\prime}\;=\;\frac{\Delta T}{\sqrt{1\;-\;\frac{v^{2}}{c^{2}}}}[/mathb] | ||
+ | |- | ||
|Block Math | |Block Math | ||
- | |<pre><math></math></pre> | + | |<pre><math>\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}</math></pre> |
- | |<math> | + | |<math>\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}</math> |
|} | |} |