Help:Math
From DynaWiki
| Line 5: | Line 5: | ||
|-  | |-  | ||
|Inline Math  | |Inline Math  | ||
| - | |<pre>The Lorentz factor [math]\gamma[/math] was   | + | |<pre>The Lorentz factor [math]\gamma[/math] was over one.</pre>  | 
| - | |The Lorentz factor [math]\gamma[/math]   | + | |The Lorentz factor [math]\gamma[/math] was over one.  | 
|-  | |-  | ||
|Block Math  | |Block Math  | ||
| Line 23: | Line 23: | ||
|-  | |-  | ||
|Block Math  | |Block Math  | ||
| - | |<pre></pre>  | + | |<pre>  | 
| - | |<math>\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}</math>  | + | <nowiki>  | 
| + | <math>  | ||
| + | \operatorname{erfc}(x) =   | ||
| + | \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =   | ||
| + | \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n   | ||
| + | \frac{(2n)!}{n!(2x)^{2n}}  | ||
| + | </math>  | ||
| + | </nowiki></pre>  | ||
| + | |<nowiki><math>  | ||
| + | \operatorname{erfc}(x) =    | ||
| + | \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =    | ||
| + | \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n    | ||
| + | \frac{(2n)!}{n!(2x)^{2n}}</math></nowiki>  | ||
|}  | |}  | ||


