Help:Math

From DynaWiki

Jump to: navigation, search
Line 5: Line 5:
|-
|-
|Inline Math
|Inline Math
-
|<pre>The Lorentz factor [math]\gamma[/math] was greater than one.</pre>
+
|<pre>The Lorentz factor [math]\gamma[/math] was over one.</pre>
-
|The Lorentz factor [math]\gamma[/math] is greater than one.
+
|The Lorentz factor [math]\gamma[/math] was over one.
|-
|-
|Block Math
|Block Math
Line 23: Line 23:
|-
|-
|Block Math
|Block Math
-
|<pre></pre>
+
|<pre>
-
|<math>\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}</math>
+
<nowiki>
 +
<math>
 +
\operatorname{erfc}(x) =
 +
\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
 +
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n
 +
\frac{(2n)!}{n!(2x)^{2n}}
 +
</math>
 +
</nowiki></pre>
 +
|<nowiki><math>
 +
\operatorname{erfc}(x) =  
 +
\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =  
 +
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n  
 +
\frac{(2n)!}{n!(2x)^{2n}}</math></nowiki>
|}
|}

Revision as of 05:21, 6 October 2010


All material copyright 1996-2011 Dynaverse.Net / XenoCorp Inc. unless otherwise noted. All Rights Reserved.
Site Map