Help:Math
From DynaWiki
Line 5: | Line 5: | ||
|- | |- | ||
|Inline Math | |Inline Math | ||
- | |<pre>The Lorentz factor [math]\gamma[/math] was | + | |<pre>The Lorentz factor [math]\gamma[/math] was over one.</pre> |
- | |The Lorentz factor [math]\gamma[/math] | + | |The Lorentz factor [math]\gamma[/math] was over one. |
|- | |- | ||
|Block Math | |Block Math | ||
Line 23: | Line 23: | ||
|- | |- | ||
|Block Math | |Block Math | ||
- | |<pre></pre> | + | |<pre> |
- | |<math>\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}</math> | + | <nowiki> |
+ | <math> | ||
+ | \operatorname{erfc}(x) = | ||
+ | \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = | ||
+ | \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n | ||
+ | \frac{(2n)!}{n!(2x)^{2n}} | ||
+ | </math> | ||
+ | </nowiki></pre> | ||
+ | |<nowiki><math> | ||
+ | \operatorname{erfc}(x) = | ||
+ | \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = | ||
+ | \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n | ||
+ | \frac{(2n)!}{n!(2x)^{2n}}</math></nowiki> | ||
|} | |} |